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Simplified thermal lattice Boltzmann model for incompressible thermal flows
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Considering the fact that the compression work done by the pressure and the viscous heat dissipation can be
neglected for the incompressible flow, and its relationship with the gradient term in the evolution equation for
the temperature in the thermal energy distribution model, a simplified thermal energy distribution model is
proposed. This thermal model does not have any gradient term and is much easier to be implemented. This
model is validated by the numerical simulation of the natural convection in a square cavity at a wide range of
Rayleigh numbers. Numerical experiments showed that the simplified thermal model can keep the same order
of accuracy as the thermal energy distribution model, but it requires much less computational effort.
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I. INTRODUCTION

PACS nunderd5.50—j, 47.11+]

and the viscous heat dissipation. So this term is intentionally

discarded by us. After this simplification, there is no viscous
The kinetic nature of the lattice Boltzmann methodterm in the evolution equation for the new density distribu-
(LBM) has helped in developing it into an alternative methodtion function, so there is no need to introduce the new vari-

for fluid dynamics in the past ten yedrs]. Although it has

ables to keep the viscosity same for both governing equa-

been successfully used in the isothermal flow problems, it§ons. As a result, the above-mentioned two shortcomings
application in the heat transfer system has not achieved sudfr the original thermal energy distribution model can be
great success because of the severe numerical instability fev€rcome.

the thermal models.

Our simplified thermal model is validated by the numeri-

In general, the current thermal models fall into the follow- ¢l simulation of the natural convection in a square cavity at
ing categories: the passive scalar approach, the multispe@jWwide range of Rayleigh numbers. Its improvement in the
approach, and the thermal energy distribution model progfficiency to get the same accurate results is demonstrated by

posed by He, Chen, and Dool¢g]. Previous work[2—4]

the comparison with numerical results using the original

showed that the thermal energy distribution model is a suitthermal model. Its compressibility is also studied by the
able tool for solving real thermal problems. But, there still comparison with numerical results using the incompressible
exist some shortcomings for this thermal model. On ondattice Boltzmann Bhatnagar-Gross-Kro@kBGK) model in
hand, it contains one complicated gradient operator term ithe simplified thermal energy distribution model.

the evolution equation for the temperature, and thus the sim-
plicity property of the LBM has been lost. On the other hand,
since the viscosity is involved not only in the momentum
equation but also in the energy equation, the new variables
for the thermal energy distribution functions are used so as to

II. SIMPLIFIED THERMAL ENERGY DISTRIBUTION

MODEL

A. Original thermal energy distribution model

keep the viscosity consistent in the governing equations for The thermal energy distribution model uses a new distri-
the thermal energy distribution model and to avoid the im-bution function to simulate the temperature field. The mac-
plicitness of the schemf2]. The governing equations are roscopic density and velocity fields are still simulated using
transformed to the forms whose variables are the new densififie density distribution function.

distributions. However, the simple bounce-back condition for

The density distribution function and the new distribution

the nonequilibrium functions is the relationship for the old function satisfy the following equations, respectively:

density distributions. Such relationship becomes very com-

plicated after changing to the new forms for the new vari- T (x+e,ott+8)—f (x,t)=—

ables, since the evolution equations are for the new variables.
This leads to the loss of one good feature for the LBM that
boundary condition can be easily implemented. The detailed
explanation of these drawbacks will be shown in the follow-
ing section.

In this paper, a simplified thermal energy distribution
model is proposed by us to overcome the above shortcom-
ings. This simplified thermal model is based on the assump-
tion that in real incompressible applications, the compression
work done by the pressure and the viscous heat dissipation
can be neglected. Our study found that the complicated gra-
dient operator term in the original thermal energy distribu-
tion model is mainly used to recover the compression work
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where It is worth to mention that the old variabfe, for the density
_ St St distribution function is used for the expressionsgyf and
fo=fat 2—(fa—f§q)—7Fa, (3 7fa(x,e,,1)q,0t/ (7.+1/26t) in Eq. (2).
v The bounce-back rule of the nonequilibrium distribution

_ ot eq . Ot function proposed by Zou and HB&] is used for the bound-
9a=9at 5 (9a™ g+ 7 fala, (3D ary condition. The density distribution function at the bound-
‘ ) ary should satisfy the following condition:
E :M feda (30) f1e0%= fzeq, 5)

“ RT @’
wheree, andeg have opposite directions. The new density
N 3\ 7 istribution function at the boundary satisfies
q,=(8,—V)-| =(=Vp+V-II)+(&,~V)-VV|, (3d) distribution func y
12 Y+ VvV 3 o T — (g e . 6)
= +
po( ), (3 It should be emphasized that the old variables of the thermal
genergy distribution model are used in the boundary condi-
tion, Egs.(5) and(6), while the governing equations are for
the new variables. Transformation is needed for every time
step and the extra computational effort is introduced.

andG are the external forces acting on the unit mass. It ca
be seen in Eq(2) that there exists a complicated gradient
term f g, . The simplicity property of the LBM has been
lost.

Two new variabled, ﬁfor the thermal energy distribu- B. Simplified thermal energy distribution model
tion model are used so as to keep the consistency of the
viscosity and to keep the scheme expl[@t. In the isother-
mal LBM, the evolution equation for the density distribution
is

We can see from the above section that the use of the new
variables is due to the requirement that the viscosity in the
two governing equations for the thermal energy distribution
1 model should be consistent. It is well accepted that the vis-
_ __ = _ e cous heat dissipation term in the energy equation can be
Fa(X+eqdtt+ o) = Ta(X,0) T,,[fa(x,t) falxb)] neglected for the incompressible flow. So, the omitting of the
viscous heat dissipation and compression work done by pres-
sure in macroscopic energy equation can be reflected by

This introduces a second-order truncation error and this trurd"0PPINg out the gradient term in the evolution equation for

cation error is fortunately nondestructive because it can b€ neéw distribution function, since such gradient term is

totally absorbed into the physical viscous term. The onlymMainly used to recover these terms through the Chapman-
effect is the change of the viscosity from= r cé&t to v Enskog expansion. Based on this consideration, the simpli-

=(ry—%)c§5t. However, this will cause some problem for fied thermal energy distribution model is proposed.

the thermal LBM, because the density distribution function The governing equations for the simplified thermal energy

exists in both equations. During the Chapman-Enskog mng'Strlbutlon model are

tiscale expansions, its nonequilibrium part, which comes
from the first-order Chapman-Enskog approximation and has
nothing to do with the second-order Chapman-Enskog ap-
proximation, is used by the gradient term in E8) to re- +otF,, (7)
cover the viscous heat dissipation term in the macroscopic 1

energy equation. This means that the viscosity in the viscousg_(x+e,dt,t+ 8t) — g, (X,t)= — —[g.(x,D)—g5Ax,1)].
heat dissipation term should he= 7,c25t, which is incon- Te

sistent with the viscosity=(7,— 3)cZét in Eq. (4). So the ®)
new variables and their governing equations have to be use@hen the 9-bit model, which is defined as

+ otF,. 4

f(X+e,0t,t+ot)—f (x,1)=— Ti[fa(x,t)—fgf’(x,t)]

0, a=0
é,=1 {cog(a—1)m/2],siN(a—1)7/2]}c, a=123,4 9)
v2{cog (a—5)w/2+ w/4],sin (a—5)7/2+ wl4]}c, «=5,6,7,8

is used, the equilibrium function for the density distribution where wo=3, w,=3 for «=1,2,34, w,=5 for

function is given as «=5,6,7,8. Similarly, following the work of He,
- L o ) Chen, and Doolen[2], the equilibrium distribution
Fow p| 14 3e“2'V+ 9(ea.2\/) B 3_V2 ’ (10) fur_mtions for the new thermal energy distributigncan be

c 2c 2c written as
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2pe V2
eq_ _ _°
e« PE 3+Séa~\7+9(éa-V)2 3 V2
9234779127272 T2 2
(11b)
e« PE 8,V 9(&, V)2 3V2
95,6,7,8:£ 3+6 C2 +§ C4 E?, (llC)

where e=DRT/2. Then the macroscopic density, velocity,

and temperature are calculated by

p=2 fa, (129
pV=2 &,f,, (12
pe=2 0,. (129
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do(pe) +V-(pVe)=0, (189

du(pe)+

1
1_Z>H(l):0’ (19)
c

where MTM=3 (do+6 V)g® and it is MO=
—1.2V?(pe) after neglecting the terms @(u?sT). Com-
bining Egs.(18) and(19), we can get

(pe)+V-(pVe)=xV2(pe). (20)
The diffusivity y is determined by
x=5(r—3)c?6t. (21)

From the above derivation, we can see that evolution equa-
tions (7) and(8) can recover the macroscopic continuity, NS
equation, and energy equation through the Chapman-Enskog
expansion.

This simplified thermal energy distribution model has the
following good features as compared with the original ther-
mal energy distribution model. First, it does not include the

The Chapman-Enskog expansion for the density distributioff?MPI€x gradient term in the evolution equation for the new

function can recover the continuity and Navier-StokR$S)

equation. The detailed derivation of this is given by Hou
et al.[6] and will not be shown here. The viscosity is deter-

mined by

v=(7,—3)ciét. (13

density distribution function and keeps the same simple form
as the isothermal LBM. Second, it does not use the new
variables. This simplifies the calculation process. Third, the
bounce-back rule of the nonequilibrium distribution function
is also used for the boundary condition for this simplified
thermal model. But it is very easy for the simplified model to
implement, since the variables for the evolution equations

It can be shown that the macroscopic energy equation can d the boundary conditions are consistent.
derived from the evolution equation for the new thermal en-
ergy distribution function by the Chapman-Enskog expan-C. The accuracy of the simplified thermal energy distribution

sion following the same procedure as Heual. [6]. The

Taylor series expansion for E(B) to O(45%) results in
- 52 -
85(0,+6-V)g,+ ?[at+é~V]zga+ 0(6%)

1
=——(9,— 92, (14)

Tc

whereg® is represented ag'”). Expandingg,, aboutg!®,
we can get

0=y + 89, + 89,7 +0(6%). (15
The first-order expansion of EL4) is
3. v)q0 1 (1)
(ﬁt0+e'v)ga :_T_ga . (16)
C

The second-order expansion of Ed4) is

0
‘9t19(a '+

- 1
_ a. D _ 4@
1- 5| (ore Vgl =— —g?. a7

Taking summation of Eq€16) and(17), we can get

model in space

Before we do the numerical simulation using the simpli-
fied thermal energy distribution model, we need to study its
accuracy in space. We take the porous plate problem as a test
case for the study, since it has the analytical solution. The
problem is a channel flow where the upper cool plate moves
with a constant velocity, and a constant normal flow of fluid
is injected through the bottom warm plate and withdrawn at
the same rate from the upper plate. The analytical solution of
the velocity field in steady state is given by

e(Rey/L)_l)

TeRe1 (22

u:UO(

whereuy is the velocity of the upper plate, Re is the Rey-
nolds number based on the inject veloaity, and the chan-
nel width isL. The temperature profile in the steady state
satisfies

T=To+AT (23)

e(Pr Rey/L) _ 1
ePr Re__ 1 ’

where AT=T,—T, is the temperature difference between
the hot bottom plate with temperatufg and the cool wall
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FIG. 1. Numerical error versus lattice spacing for the porous “ 0T /9y =0

plate flow. FIG. 3. Configuration of natural convection in a square
cavity.

with temperaturd . Another two dimensionless parameters

are P=v/y and Ra=(gBATL®)/(vy) (where Pr is the lll. NUMERICAL SIMULATION OF NATURAL

Prandtl number and Ra is the Rayleigh number CONVECTION IN A SQUARE CAVITY

Simulations were carried out to evaluate the numerical . R .
accuracy in space of the model. In the simulations, the In order to validate the simplified thermal energy distri-

Prandtl number is set to be 0.71, R0, and Ra 100. The bution model, we carried out the computation for a sample
lattice spacing\x varies fromz; to 15, Relative global errors problgm. The problem consiQered_ is a natural conyec'gion na
in temperature field were measured and defined by tv_vo—dlmensmnal square cavity with S|dewallls maintained at

different temperatures. The temperature difference between
the walls introduces a temperature gradient in the fluid, and
the consequent density difference induces a fluid motion, that
is, convection. The top and bottom walls are adiabatic. The
problem definition and the boundary conditions are displayed
in Fig. 3.

£l VI TOGY) = Ta(x,y) |2

VT Z

(29)

where the summation is over the entire field andis the
analytical solution. Suppose that the order of accuracy of the _ ) o
model isn. Then we have the following relationship: A. Dimensionless parameters and relaxation times
The Boussinesq approximation is applied to the buoyancy
E=C(AX)", (25) fc_Jrce term. This means that the propertgsand v are con-
sidered as constants, and the buoyancy term is assumed to
depend linearly on the temperature,
whereC is a constant. Equatiof25) can also be written as
pG=pBYo(T=Tm)j, (27)
IN(E)=In(C)+nIn(Ax). (26)
whereg is the thermal expansion coefficieg, is the accel-

Clearly, In€) has a linear relationship with 1n§). This is ~ €ration due to gravityT , is the average temperature, gnis
confirmed by Fig. 1, which shows IB) versus Infx). The  the vertical direction opposite to that of gravity. ,

fitting curve is a straight line whose sloperisFrom Fig. 1, The dynamical similarity depends on two dimensionless
we obtainn=2.02. This implies that the present model is of parameters: the Prandtl number Pr and the Rayleigh number
second order in space. The velocity and temperature profile@a’

for this case are shown in Fig. 2. They agree very well with

the analytical solutions. Pr=vly, Ra=(BgoATH®/(vy). (28)

1
0.8

—_— To ensure that the code is working properly in the near-
incompressible regime, we carefully choose the value of
BYoATH. OnceBgoATH is determined, the kinetic viscos-

a 06 analytic velocity ity and the thermal diffusivity are determined through the
> 04 s calculated velocity by LBM two dimensionless numbers Pr and Ra. By using E43)
02 — - - - analytic temperature and (21), two relaxation timesr,,7. are determined. The
* calculated temperature by LBM Nusselt number Nu is one of the most important dimension-
0 ’ ; ‘ ’ ! less parameters in describing the convective heat transport.
0 02 04 0.6 08 1 Its average in the whole flow domain is defined by
vand T
. L — H 1 (H[H
ﬂOVEIG. 2. Velocity and temperature profiles in the porous plate Nu= XA_T quo jo ax(X,y)dx dy, (29
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6_ 2 5 6. 2 5 tion, the temperature on the wall is unknown. In order to use
the above-mentioned bounce-back condition, we transfer it

3 1_3%1 to the Dirichlet-type condition by using the conventional

2Ky g D second-order finite difference approximation to get the tem-
perature on the boundafy].

C. Grid and convergence criterion

The uniform grid is used for all of the following numeri-

cal simulations.
The convergence criterion for all the cases is set to

6. 2 5 6. 2 5
3 | 4 1 ma){|\/(un+1)2+(vn+1)2_ \/(un)2+(vn)2|]$10787
7 4 8 7 4 8 ma)dTn+1_Tn|$1o—8’ (30)
FIG. 4. Schematic plot of velocity directions at four corner
points. wheren and n+1 represent the old and new time levels,

respectively.
where gy(x,y) =uT(X,y) — x(a/dx)T(x,y) is the local heat All the calculation is done on the PC PIV-1.6G.

flux in horizontal direction.
B. Implementation of the boundary condition IV. RESULTS AND DISCUSSION

Th.e b.ounce_b.aCk .rU|e of the nonequmbnum dlstrlbutlpn A. Validation of the numerical results and analysis of flow
function is used in this work. At four corner points, the dif- and thermal fields

ferent treatment at some special particle directions is needed. _ . .
The schematic plot of velocity directions of the 9-bit model ~ Table I shows the numerical results of the maximum hori-

at four corner points is shown in Fig. 4. At the particle di- zontal velocity on the vertical midplane of the cavityyay,
rections 6 and 8 for the left bottom and right upper corner@nd its locationY, the maximum vertical velocity on the
points, the particle directions 5 and 7 for the left upper andhorizontal midplane of the cavity .y, and its locationX,
right bottom corner points, their values for the thermal en-the average Nusselt number throughout the caMiyfor a
ergy distribution functions cannot be determined from theirwide range of Rayleigh numbers using the simplified thermal
evolution equations and the bounce-back boundary condenergy distribution model. The numerical results of Navier-
tion. Since these values do not transport any information int&tokes equations given by Shu and Xié using the differ-
the interior points, the equilibrium functions are given for theential quadraturéDQ) method are also included for com-
two distribution functions. For the adiabatic boundary condi-parison. Note that the velocity shown in the table is

TABLE |. Comparison of numerical results among the simplified thermal energy distribution model,
original thermal energy distribution model, and a Navier-Stokes solver.

Ra 16 oy 10° 10°
Simplified 3.644 16.134 34.261 63.024
Umax Original 3.649 16.156 34.245 63.527
DQ [7] 3.649 16.190 34.736 64.775
Simplified 0.810 0.820 0.855 0.848
y Original 0.810 0.820 0.855 0.844
DQ [7] 0.815 0.825 0.855 0.850
Simplified 3.691 19.552 67.799 215.26
U max Original 3.700 19.679 68.276 218.47
DQ [7] 3.698 19.638 68.640 220.64
Simplified 0.180 0.120 0.065 0.040
X Original 0.180 0.120 0.065 0.040
DQ [7] 0.180 0.120 0.065 0.035
Simplified 1.117 2.241 4511 8.731
Nu Original 1.117 2.244 4.520 8.781
DQ [7] 1.118 2.245 4.523 8.762
CPU (s Simplified 1386.0 7010.7 35666.0 98617.3
Original 2297.0 17 864.7 96 296.6 171659.3
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TABLE Il. Grid-dependence study for the natural convection in a square cavity -atlBa

Mesh 51X51 101x101 151x 151 201x201 DQ
Upax 16.082 16.128 16.134 16.155 16.190
y 0.820 0.820 0.820 0.825 0.825
U max 19.451 19.504 19.552 19.666 19.638
X 0.120 0.120 0.120 0.120 0.120
Nu 2.210 2.232 2.241 2.242 2.245

normalized by the reference velocity gfH, wherey is the  From Table |, we can see that the numerical results using the
thermal diffusivity andH is the height of the square cavity. simplified thermal energy distribution model generally agree
The grid-dependence study of the results is examined bewell with the benchmark results of Shu and XUg in a
fore the comparison. One example of the Rayleigh numbewide range of Rayleigh numbers. The deviation of the two
of 10* is given in Table Il. In this study, the number of grid results at high Rayleigh number is larger than that at low
points is taken the same in both tk@ndy directions. That Rayleigh number. But these deviations are acceptable. So we
is, the grid size is taken 88X N, whereN is the grid num- can say that the present results are very accurate, and the
ber in each spatial direction. The calculated average Nussegiresent method can be used to solve the thermal problems
number changing wittN is shown in Table Il. From this accurately and effectively.
table, we can clearly see that whahincreases, the calcu- It can be seen from Table | that, with the increase of the
lated average Nusselt number quickly approaches the bencRayleigh number, due to the enhancement of natural convec-
mark result. Whem further increases from 151 to 201, there tion, U, U max,» NU are increased greatly, and the position of
is not much improvement for the result. So we can say thamaximum vertical velocity on the horizontal midplane
for Ra=10%, the grid size of 15% 151 can give very accu- moves closer to the wall. It is also found that the Nusselt
rate results. The relative errors for the average Nusselt nunrumber obtained by the present method is slightly smaller

ber defined by than the Navier-Stokes result of Shu and Xud, which
_ agrees well with the phenomenon observed in the simulation
V(Nu—Nu,)? of the Rayleigh-Benard convection by He, Chen, and Doolen
E=———, (31  [8]. Figures 6 and 7 show the streamlines and isotherms of
NU2 Ra=10° 10%, 10°, 1(P. These plots agree well with those

obtained by Shu and Xué#].

whereNu, iS, the benchmark S'olu.tion, versus lattice spacing B. Comparison of our numerical results with those using
are shown in Fig. 5. From this figure, we can see that the
slope of the fitting line is 1.96. This confirms that the present
model is around second order in space. Through the grid- In order to test the accuracy and efficiency of the simpli-
dependence study, the grid sizes of ¥aD1 for Ra=10°,  fied thermal energy distribution model as compared with the
151x 151 for Ra=10% 201x201 for Ra=10°, and 251

the original thermal energy distribution model

x 251 for Ra= 1P are found to be sufficient for engineering
purposes. So the above comparisons are done on those grids.
-4 -
-4.5 1
-5 4
[ ]
@ -5.5
on
° 6
L ]
-6.5 1
-7 -
7.5 ; ; : ; , ‘
6 55 -5 -45 -4 35 -3
log(Ax)=log(1/N)
) Ra=10° Ra=10°
FIG. 5. Numerical errors for the average Nusselt number versus
lattice spacing for the natural convection at=RE0’. FIG. 6. Streamlines of Ral1C®, 10, 1¢°, and 16.
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! pressible scheme is, in fact, equivalent to the model previ-
ously proposed by He and LUd0].
The density distribution function is changed into
1
/ f(X+e,dt t+ 5t)—fa(x,t)=—T—[fa(x,t)—fi"(x,t)]
| ﬁ +Fa, (32

Ra=10? Ra=10*

WhereFa: - %&(5a2+ 50{4)éa' J_)gB(T_Tm)Y

J f\;{j —4op+sy(V), a=0
fe=1{ Ap+s,(V), a=1,2,3,4
/ /\J/ yp+5,(V), «=5,6,7,8,
C (/ N 36,V 9(6,-V)2 3V2

Sa(v) =W, CZ + 2C2 - z

Ra=10° Ra=10°

FIG. 7. Isotherms of Ra10®, 10%, 1¢°, and 16.

|~

o=% A= o

i
[N
N

original thermal energy distribution model, the numerical i ,
simulations for the same Rayleigh number on the same grid '€ macroscopic variables are calculated by
using the original thermal model are also carried out. These 8
numerical results for the Rayleigh numbers of 1004, 10°, - 1
and 16 are also given in Table I. V=a§1 €far P=74
It can be observed from Table | that, for the same Ray-
leigh number and the same number of grid points, the calcu- Since this is a completely incompressible LBGK model
lated results using the _simplified .th.ermal model are almos.‘fhe Chapman-Enskog expansion of this evolution equatic;n
the same as those using the original thermal model. Thig; ecover the incompressible continuity and NS equation
confirms our findings that the compression work done by th% rrectly. We compare the numerical results of natural con-
pressure and viscous heat dissipation term can be neglectgéction in a square cavity for a wide range of Rayleigh num-
for such incompressible flow, which leads to the omission of, o using the incompressible LBGK model and without us-
the gradient term in the original evolution equation for theirlg t’he incompressible LBGK model to see the effect of the
new distribution function. So we can say that the Simp“ﬁedcompressibility of our simplified thermal model.

thermal model can get the same accurate results as the origi- Table 1ll shows the numerical results of the maximum
horizontal velocity on the vertical midplane of the cavity,

nal thermal model.
As far as the computational efficiency is concerned, for, o and its locationy, the maximum vertical velocity on
he horizontal midplane of the cavity,,,x, and its location

the same grid size, the calculation time using the simplifie
thermal model is much less than that using the original therX the average Nusselt number throughout the caN_ilws-
ing the simplified thermal model with and without the in-

mal model. From Table I, we can see that for=RE®, the
compressible LBGK model. The numerical results of Navier-

calculation time using the simplified thermal model is 1386.0
s, while the original thermal model takes 2297.0 s to get theStokes equations given by Shu and X using the DQ
method are also included as benchmark data.

converged solution. Similarly, for Ra10*— 1, only half or
even less than half of the calculation time is needed for the From Table Ill, we can see that the difference in the re-
sults using and without using the incompressible LBGK

simplified thermal model to get the converged results as
CRc;mlg?rﬁdn\:JVg]hbé?eT%rilglgﬁlo\t/\r/]sermgi gsgiliﬁnﬁf?é dthtﬁes;ﬁqrgﬁnodel is very small. But the results of the velocities using

ylelg o - P the incompressible LBGK model agree a little bit better with
model is more efficient than the original thermal model at

' the benchmark results than those without using the incom-
getting the same accurate results. pressible model. The higher the Rayleigh number is, the bet-
ter this improvement is. For example, for Ra0*, the result
A of the maximum horizontal velocity on the vertical midplane

distribution model of the cavity is 16.134 without using the incompressible
In order to study the compressibility property of this model and 16.146 using the incompressible model, while the
scheme, we use an incompressible isothermal LBGK modddenchmark result is 16.190. This shows that there is a little
proposed by Guf9] to modify the evolution equation for the bit of improvement for the maximum horizontal velocity on
density distribution function in our simplified thermal energy the vertical midplane if using the incompressible model. For
distribution model. It should be pointed out that this incom-a high Rayleigh number of £0the maximum horizontal ve-

8
Zl fa+so(\7)} (33

C. Compressibility study of the simplified thermal energy
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TABLE Ill. Comparison of results using and without using the incompressible LBGK model.

Ra 16 10* 10° 10°
Grid 101x 101 151X 151 201< 210 251X 251
Using 3.650 16.146 34.315 63.671
Upmax Without 3.644 16.134 34.261 63.024
DQ [7] 3.649 16.190 34.736 64.775
Using 0.810 0.820 0.855 0.852
y Without 0.810 0.820 0.855 0.848
DQ [7] 0.815 0.825 0.855 0.850
Using 3.704 19.593 68.012 217.57
U max Without 3.691 19.552 67.799 215.26
DQ [7] 3.698 19.638 68.640 220.64
Using 0.180 0.120 0.065 0.040
X Without 0.180 0.120 0.065 0.040
DQ [7] 0.180 0.120 0.065 0.035
Using 1.117 2.241 4.508 8.737
Nu Without 1.117 2.241 4.511 8.731
DQ [7] 1.118 2.245 4.523 8.762
locity on the vertical midplane of the cavity changes from V. CONCLUSIONS

63.024 without using the incompressible model to 63.671

using the incompressible model, while the benchmark result ) : .
is 64.775. The improvement is more obvious than that at g9Uare cavity for a wide range of Rayleigh numbers show

low Rayleigh number of 10 The same trend is applied to that our simplified thermal energy distribution model can get

the maximum vertical velocity on the horizontal midplane of the same accurate results more efficiently as the original
the cavity. There is not much change in the average Nussdipermal energy distribution model. The compressibility of
number. This is in line with the physical background of thethis scheme is also studied and the results show that the
incompressible LBGK model. Since the use of the incom-compressibility effect of this scheme can be neglected. The
pressible LBGK model is only for the evolution equation of simplification for the original thermal model agrees well
the density distribution function, which is used to calculatewith the physical explanation that the compression work
the pressure and velocity, the improvement for the velocitieslone by the pressure and the viscous heat dissipation can be
is straightforward, while for the evolution equation of the ignored for the incompressible flow. This scheme has the
new distribution function we still need to introduce the as-following good features. It does not include any gradient
sumption that the characteristic velocify3g,ATH is within  term in the evolution equations and it preserves the simplic-
the incompressible limit. So there should not be much differdity of the LBM. It is easier to implement as compared with
ence for the Nusselt number using or without using the inthe original thermal model. It is worth mentioning that al-
compressible LBGK model. though all the calculations are done on the uniform grid, its

To sum up, this study shows that the compressibility ef-extension to the arbitrary mesh grid is straightforward by
fect of the simplified thermal model is very small and can beusing the Taylor series expansion- and least-squares-based
used to solve the incompressible thermal flow without intro-LBM (TLLBM ). The use of TLLBM in the thermal model
ducing any incompressible LBGK model. has been studied by Shu, Peng, and Chéjw

The numerical results of the natural convection in a
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