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Simplified thermal lattice Boltzmann model for incompressible thermal flows
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Considering the fact that the compression work done by the pressure and the viscous heat dissipation can be
neglected for the incompressible flow, and its relationship with the gradient term in the evolution equation for
the temperature in the thermal energy distribution model, a simplified thermal energy distribution model is
proposed. This thermal model does not have any gradient term and is much easier to be implemented. This
model is validated by the numerical simulation of the natural convection in a square cavity at a wide range of
Rayleigh numbers. Numerical experiments showed that the simplified thermal model can keep the same order
of accuracy as the thermal energy distribution model, but it requires much less computational effort.
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I. INTRODUCTION

The kinetic nature of the lattice Boltzmann meth
~LBM ! has helped in developing it into an alternative meth
for fluid dynamics in the past ten years@1#. Although it has
been successfully used in the isothermal flow problems
application in the heat transfer system has not achieved
great success because of the severe numerical instabilit
the thermal models.

In general, the current thermal models fall into the follo
ing categories: the passive scalar approach, the multisp
approach, and the thermal energy distribution model p
posed by He, Chen, and Doolen@2#. Previous work@2–4#
showed that the thermal energy distribution model is a s
able tool for solving real thermal problems. But, there s
exist some shortcomings for this thermal model. On o
hand, it contains one complicated gradient operator term
the evolution equation for the temperature, and thus the s
plicity property of the LBM has been lost. On the other han
since the viscosity is involved not only in the momentu
equation but also in the energy equation, the new varia
for the thermal energy distribution functions are used so a
keep the viscosity consistent in the governing equations
the thermal energy distribution model and to avoid the i
plicitness of the scheme@2#. The governing equations ar
transformed to the forms whose variables are the new den
distributions. However, the simple bounce-back condition
the nonequilibrium functions is the relationship for the o
density distributions. Such relationship becomes very co
plicated after changing to the new forms for the new va
ables, since the evolution equations are for the new variab
This leads to the loss of one good feature for the LBM t
boundary condition can be easily implemented. The deta
explanation of these drawbacks will be shown in the follo
ing section.

In this paper, a simplified thermal energy distributio
model is proposed by us to overcome the above shortc
ings. This simplified thermal model is based on the assu
tion that in real incompressible applications, the compress
work done by the pressure and the viscous heat dissipa
can be neglected. Our study found that the complicated
dient operator term in the original thermal energy distrib
tion model is mainly used to recover the compression w
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and the viscous heat dissipation. So this term is intention
discarded by us. After this simplification, there is no visco
term in the evolution equation for the new density distrib
tion function, so there is no need to introduce the new va
ables to keep the viscosity same for both governing eq
tions. As a result, the above-mentioned two shortcomi
for the original thermal energy distribution model can
overcome.

Our simplified thermal model is validated by the nume
cal simulation of the natural convection in a square cavity
a wide range of Rayleigh numbers. Its improvement in
efficiency to get the same accurate results is demonstrate
the comparison with numerical results using the origin
thermal model. Its compressibility is also studied by t
comparison with numerical results using the incompress
lattice Boltzmann Bhatnagar-Gross-Krook~LBGK! model in
the simplified thermal energy distribution model.

II. SIMPLIFIED THERMAL ENERGY DISTRIBUTION
MODEL

A. Original thermal energy distribution model

The thermal energy distribution model uses a new dis
bution function to simulate the temperature field. The m
roscopic density and velocity fields are still simulated us
the density distribution function.

The density distribution function and the new distributio
function satisfy the following equations, respectively:

f̄ a~x1eadt,t1dt !2 f̄ a~x,t !52
dt

tn11/2dt
@ f̄ a~x,t !

2 f a
eq~x,t !#1

tnFadt

tn11/2dt
,

~1!

ḡa~x1eadt,t1dt !2ḡa~x,t !52
dt

tc11/2dt
@ ḡa~x,t !

2ga
eq~x,t !#

2
tcf a~x,t !qadt

tc11/2dt
, ~2!
©2003 The American Physical Society01-1
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where

f̄ a5 f a1
dt

2tn
~ f a2 f a

eq!2
dt

2
Fa , ~3a!

ḡa5ga1
dt

2tc
~ga2ga

eq!1
dt

2
f aqa , ~3b!

Fa5
GW •~eWa2VW !

RT
f a

eq, ~3c!

qa5~eWa2VW !•F1

r
~2¹W p1¹W •P!1~eWa2VW !•¹W VW G , ~3d!

)5rv~¹VW 1VW ¹!, ~3e!

andGW are the external forces acting on the unit mass. It
be seen in Eq.~2! that there exists a complicated gradie
term f aqa . The simplicity property of the LBM has bee
lost.

Two new variablesf̄ , ḡ for the thermal energy distribu
tion model are used so as to keep the consistency of
viscosity and to keep the scheme explicit@2#. In the isother-
mal LBM, the evolution equation for the density distributio
is

f a~x1eadt,t1dt !2 f a~x,t !52
1

tn
@ f a~x,t !2 f a

eq~x,t !#

1dtFa . ~4!

This introduces a second-order truncation error and this t
cation error is fortunately nondestructive because it can
totally absorbed into the physical viscous term. The o
effect is the change of the viscosity fromy5tnc5

2dt to y
5(tn2 1

2 )c5
2dt. However, this will cause some problem fo

the thermal LBM, because the density distribution functi
exists in both equations. During the Chapman-Enskog m
tiscale expansions, its nonequilibrium part, which com
from the first-order Chapman-Enskog approximation and
nothing to do with the second-order Chapman-Enskog
proximation, is used by the gradient term in Eq.~2! to re-
cover the viscous heat dissipation term in the macrosco
energy equation. This means that the viscosity in the visc
heat dissipation term should bey5tnc5

2dt, which is incon-
sistent with the viscosityy5(tn2 1

2 )c5
2dt in Eq. ~4!. So the

new variables and their governing equations have to be u
n
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It is worth to mention that the old variablef a for the density
distribution function is used for the expressions ofḡa and
tcf a(x,ea ,t)qadt/(tc11/2dt) in Eq. ~2!.

The bounce-back rule of the nonequilibrium distributio
function proposed by Zou and He@5# is used for the bound-
ary condition. The density distribution function at the boun
ary should satisfy the following condition:

f a
neq5 f b

neq, ~5!

whereea andeb have opposite directions. The new dens
distribution function at the boundary satisfies

ga
neq2ea

2 f a
neq52~gb

neq2eb
2 f b

neq!. ~6!

It should be emphasized that the old variables of the ther
energy distribution model are used in the boundary con
tion, Eqs.~5! and ~6!, while the governing equations are fo
the new variables. Transformation is needed for every ti
step and the extra computational effort is introduced.

B. Simplified thermal energy distribution model

We can see from the above section that the use of the
variables is due to the requirement that the viscosity in
two governing equations for the thermal energy distribut
model should be consistent. It is well accepted that the
cous heat dissipation term in the energy equation can
neglected for the incompressible flow. So, the omitting of
viscous heat dissipation and compression work done by p
sure in macroscopic energy equation can be reflected
dropping out the gradient term in the evolution equation
the new distribution function, since such gradient term
mainly used to recover these terms through the Chapm
Enskog expansion. Based on this consideration, the sim
fied thermal energy distribution model is proposed.

The governing equations for the simplified thermal ene
distribution model are

f a~x1eadt,t1dt !2 f a~x,t !52
1

tn
@ f a~x,t !2 f a

eq~x,t !#

1dtFa , ~7!

ga~x1eadt,t1dt !2ga~x,t !52
1

tc
@ga~x,t !2ga

eq~x,t !#.

~8!

When the 9-bit model, which is defined as
eWa5H 0, a50

$cos@~a21!p/2#,sin@~a21!p/2#%c, a51,2,3,4

&$cos@~a25!p/21p/4#,sin@~a25!p/21p/4#%c, a55,6,7,8

~9!
is used, the equilibrium function for the density distributio
function is given as

f a
eq5warF11

3eWa•VW

c2 1
9~eWa•VW !2

2c2 2
3VW 2

2c2 G , ~10!
where w05 4
9 , wa5 1

9 for a51,2,3,4, wa5 1
36 for

a55,6,7,8. Similarly, following the work of He,
Chen, and Doolen @2#, the equilibrium distribution
functions for the new thermal energy distributiong can be
written as
1-2
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SIMPLIFIED THERMAL LATTICE BOLTZMANN MODEL . . . PHYSICAL REVIEW E 68, 026701 ~2003!
g0
eq52

2r«

3

VW 2

c2 , ~11a!

g1,2,3,4
eq 5

r«

9
F3

2
1

3

2

eWa•VW

c2 1
9

2

~eWa•VW !2

c4 2
3

2

VW 2

c2 G ,

~11b!

g5,6,7,8
eq 5

r«

36
F316

eWa•VW

c2 1
9

2

~eWa•VW !2

c4 2
3

2

VW 2

c2 G , ~11c!

where «5DRT/2. Then the macroscopic density, velocit
and temperature are calculated by

r5(
a

f a , ~12a!

rVW 5(
a

eWa f a , ~12b!

r«5(
a

ga . ~12c!

The Chapman-Enskog expansion for the density distribu
function can recover the continuity and Navier-Stokes~NS!
equation. The detailed derivation of this is given by H
et al. @6# and will not be shown here. The viscosity is dete
mined by

y5~tn2 1
2 !c5

2dt. ~13!

It can be shown that the macroscopic energy equation ca
derived from the evolution equation for the new thermal e
ergy distribution function by the Chapman-Enskog exp
sion following the same procedure as Houet al. @6#. The
Taylor series expansion for Eq.~8! to O(d2) results in

d~] t1eW•¹W !ga1
d2

2
@] t1eW•¹W #2ga1O~d2!

52
1

tc
~ga2ga

~0!!, ~14!

wherega
eq is represented asga

(0) . Expandingga aboutga
(0) ,

we can get

ga5ga
~0!1dga

~1!1d2ga
~2!1O~d2!. ~15!

The first-order expansion of Eq.~14! is

~] t01eW•¹W !ga
~0!52

1

tc
ga

~1! . ~16!

The second-order expansion of Eq.~14! is

] t1ga
~0!1S 12

1

2tc
D ~] t01eW•¹W !ga

~1!52
1

tc
ga

~2! . ~17!

Taking summation of Eqs.~16! and ~17!, we can get
02670
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] t0~r«!1¹W •~rVW «!50, ~18!

] t1~r«!1S 12
1

2tc
DP~1!50, ~19!

where P (1)5(a(] t01eW•¹W )ga
(1) and it is P (1)5

2tc
2
3 ¹2(r«) after neglecting the terms ofO(u2dT). Com-

bining Eqs.~18! and ~19!, we can get

] t~r«!1¹W •~rVW «!5x¹2~r«!. ~20!

The diffusivity x is determined by

x5 2
3 ~tc2 1

2 !c2dt. ~21!

From the above derivation, we can see that evolution eq
tions ~7! and~8! can recover the macroscopic continuity, N
equation, and energy equation through the Chapman-Ens
expansion.

This simplified thermal energy distribution model has t
following good features as compared with the original th
mal energy distribution model. First, it does not include t
complex gradient term in the evolution equation for the n
density distribution function and keeps the same simple fo
as the isothermal LBM. Second, it does not use the n
variables. This simplifies the calculation process. Third,
bounce-back rule of the nonequilibrium distribution functio
is also used for the boundary condition for this simplifi
thermal model. But it is very easy for the simplified model
implement, since the variables for the evolution equatio
and the boundary conditions are consistent.

C. The accuracy of the simplified thermal energy distribution
model in space

Before we do the numerical simulation using the simp
fied thermal energy distribution model, we need to study
accuracy in space. We take the porous plate problem as a
case for the study, since it has the analytical solution. T
problem is a channel flow where the upper cool plate mo
with a constant velocity, and a constant normal flow of flu
is injected through the bottom warm plate and withdrawn
the same rate from the upper plate. The analytical solution
the velocity field in steady state is given by

u5u0S e~Rey/L !21

eRe21 D , ~22!

whereu0 is the velocity of the upper plate, Re is the Re
nolds number based on the inject velocityv0 , and the chan-
nel width is L. The temperature profile in the steady sta
satisfies

T5T01DTS e~Pr Rey/L !21

ePr Re21 D , ~23!

where DT5T12T0 is the temperature difference betwee
the hot bottom plate with temperatureT1 and the cool wall
1-3
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PENG, SHU, AND CHEW PHYSICAL REVIEW E68, 026701 ~2003!
with temperatureT0 . Another two dimensionless paramete
are Pr5y/x and Ra5(gbDTL3)/(yx) ~where Pr is the
Prandtl number and Ra is the Rayleigh number!.

Simulations were carried out to evaluate the numer
accuracy in space of the model. In the simulations,
Prandtl number is set to be 0.71, Re510, and Ra5100. The
lattice spacingDx varies from 1

30 to 1
100. Relative global errors

in temperature field were measured and defined by

E5
A( i , j uT~x,y!2Ta~x,y!u2

A( i , j uTa~x,y!u2
, ~24!

where the summation is over the entire field andTa is the
analytical solution. Suppose that the order of accuracy of
model isn. Then we have the following relationship:

E5C~Dx!n, ~25!

whereC is a constant. Equation~25! can also be written as

ln~E!5 ln~C!1n ln~Dx!. ~26!

Clearly, ln(E) has a linear relationship with ln(Dx). This is
confirmed by Fig. 1, which shows ln(E) versus ln(Dx). The
fitting curve is a straight line whose slope isn. From Fig. 1,
we obtainn52.02. This implies that the present model is
second order in space. The velocity and temperature pro
for this case are shown in Fig. 2. They agree very well w
the analytical solutions.

FIG. 1. Numerical error versus lattice spacing for the poro
plate flow.

FIG. 2. Velocity and temperature profiles in the porous pl
flow.
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III. NUMERICAL SIMULATION OF NATURAL
CONVECTION IN A SQUARE CAVITY

In order to validate the simplified thermal energy dist
bution model, we carried out the computation for a sam
problem. The problem considered is a natural convection
two-dimensional square cavity with sidewalls maintained
different temperatures. The temperature difference betw
the walls introduces a temperature gradient in the fluid, a
the consequent density difference induces a fluid motion,
is, convection. The top and bottom walls are adiabatic. T
problem definition and the boundary conditions are displa
in Fig. 3.

A. Dimensionless parameters and relaxation times

The Boussinesq approximation is applied to the buoya
force term. This means that the propertiesb andy are con-
sidered as constants, and the buoyancy term is assume
depend linearly on the temperature,

rGW 5rbg0~T2Tm! jW, ~27!

whereb is the thermal expansion coefficient,g0 is the accel-
eration due to gravity,Tm is the average temperature, andjW is
the vertical direction opposite to that of gravity.

The dynamical similarity depends on two dimensionle
parameters: the Prandtl number Pr and the Rayleigh num
Ra,

Pr5y/x, Ra5~bg0DTH3!/~yx!. ~28!

To ensure that the code is working properly in the ne
incompressible regime, we carefully choose the value
bg0DTH. Oncebg0DTH is determined, the kinetic viscos
ity and the thermal diffusivity are determined through t
two dimensionless numbers Pr and Ra. By using Eqs.~13!
and ~21!, two relaxation timestn ,tc are determined. The
Nusselt number Nu is one of the most important dimensi
less parameters in describing the convective heat trans
Its average in the whole flow domain is defined by

Nu5
H

xDT

1

H2 E
0

HE
0

H

qx~x,y!dx dy, ~29!

s

e

FIG. 3. Configuration of natural convection in a squa
cavity.
1-4
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whereqx(x,y)5uT(x,y)2x(]/]x)T(x,y) is the local heat
flux in horizontal direction.

B. Implementation of the boundary condition

The bounce-back rule of the nonequilibrium distributi
function is used in this work. At four corner points, the d
ferent treatment at some special particle directions is nee
The schematic plot of velocity directions of the 9-bit mod
at four corner points is shown in Fig. 4. At the particle d
rections 6 and 8 for the left bottom and right upper corn
points, the particle directions 5 and 7 for the left upper a
right bottom corner points, their values for the thermal e
ergy distribution functions cannot be determined from th
evolution equations and the bounce-back boundary co
tion. Since these values do not transport any information
the interior points, the equilibrium functions are given for t
two distribution functions. For the adiabatic boundary con

FIG. 4. Schematic plot of velocity directions at four corn
points.
02670
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tion, the temperature on the wall is unknown. In order to u
the above-mentioned bounce-back condition, we transfe
to the Dirichlet-type condition by using the convention
second-order finite difference approximation to get the te
perature on the boundary@4#.

C. Grid and convergence criterion

The uniform grid is used for all of the following numer
cal simulations.

The convergence criterion for all the cases is set to

max@ uA~un11!21~vn11!22A~un!21~vn!2u#<1028,

maxuTn112Tnu<1028, ~30!

where n and n11 represent the old and new time leve
respectively.

All the calculation is done on the PC PIV-1.6G.

IV. RESULTS AND DISCUSSION

A. Validation of the numerical results and analysis of flow
and thermal fields

Table I shows the numerical results of the maximum ho
zontal velocity on the vertical midplane of the cavity,umax,
and its locationY, the maximum vertical velocity on the
horizontal midplane of the cavity,vmax, and its locationX,
the average Nusselt number throughout the cavityNu for a
wide range of Rayleigh numbers using the simplified therm
energy distribution model. The numerical results of Navi
Stokes equations given by Shu and Xue@7# using the differ-
ential quadrature~DQ! method are also included for com
parison. Note that the velocity shown in the table
odel,
TABLE I. Comparison of numerical results among the simplified thermal energy distribution m
original thermal energy distribution model, and a Navier-Stokes solver.

Ra 103 104 105 106

Simplified 3.644 16.134 34.261 63.024
umax Original 3.649 16.156 34.245 63.527

DQ @7# 3.649 16.190 34.736 64.775
Simplified 0.810 0.820 0.855 0.848

y Original 0.810 0.820 0.855 0.844
DQ @7# 0.815 0.825 0.855 0.850

Simplified 3.691 19.552 67.799 215.26
vmax Original 3.700 19.679 68.276 218.47

DQ @7# 3.698 19.638 68.640 220.64
Simplified 0.180 0.120 0.065 0.040

x Original 0.180 0.120 0.065 0.040
DQ @7# 0.180 0.120 0.065 0.035

Simplified 1.117 2.241 4.511 8.731

Nu Original 1.117 2.244 4.520 8.781

DQ @7# 1.118 2.245 4.523 8.762
CPU ~s! Simplified 1386.0 7010.7 35 666.0 98 617.3

Original 2297.0 17 864.7 96 296.6 171 659.3
1-5
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TABLE II. Grid-dependence study for the natural convection in a square cavity at Ra5104.

Mesh 51351 1013101 1513151 2013201 DQ

umax 16.082 16.128 16.134 16.155 16.190
y 0.820 0.820 0.820 0.825 0.825

vmax 19.451 19.504 19.552 19.666 19.638
x 0.120 0.120 0.120 0.120 0.120

Nu 2.210 2.232 2.241 2.242 2.245
.
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normalized by the reference velocity ofx/H, wherex is the
thermal diffusivity andH is the height of the square cavity

The grid-dependence study of the results is examined
fore the comparison. One example of the Rayleigh num
of 104 is given in Table II. In this study, the number of gr
points is taken the same in both thex andy directions. That
is, the grid size is taken asN3N, whereN is the grid num-
ber in each spatial direction. The calculated average Nus
number changing withN is shown in Table II. From this
table, we can clearly see that whenN increases, the calcu
lated average Nusselt number quickly approaches the be
mark result. WhenN further increases from 151 to 201, the
is not much improvement for the result. So we can say t
for Ra5104, the grid size of 1513151 can give very accu
rate results. The relative errors for the average Nusselt n
ber defined by

E5

A~Nu2Nua!2

ANua
2

, ~31!

whereNua is the benchmark solution, versus lattice spac
are shown in Fig. 5. From this figure, we can see that
slope of the fitting line is 1.96. This confirms that the pres
model is around second order in space. Through the g
dependence study, the grid sizes of 1013101 for Ra5103,
1513151 for Ra5104, 2013201 for Ra5105, and 251
3251 for Ra5106 are found to be sufficient for engineerin
purposes. So the above comparisons are done on those

FIG. 5. Numerical errors for the average Nusselt number ve
lattice spacing for the natural convection at Ra5104.
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From Table I, we can see that the numerical results using
simplified thermal energy distribution model generally agr
well with the benchmark results of Shu and Xue@7# in a
wide range of Rayleigh numbers. The deviation of the t
results at high Rayleigh number is larger than that at l
Rayleigh number. But these deviations are acceptable. So
can say that the present results are very accurate, and
present method can be used to solve the thermal probl
accurately and effectively.

It can be seen from Table I that, with the increase of
Rayleigh number, due to the enhancement of natural con
tion, umax, vmax, Nu are increased greatly, and the position
maximum vertical velocity on the horizontal midplan
moves closer to the wall. It is also found that the Nuss
number obtained by the present method is slightly sma
than the Navier-Stokes result of Shu and Xue@7#, which
agrees well with the phenomenon observed in the simula
of the Rayleigh-Benard convection by He, Chen, and Doo
@8#. Figures 6 and 7 show the streamlines and isotherm
Ra5103, 104, 105, 106. These plots agree well with thos
obtained by Shu and Xue@7#.

B. Comparison of our numerical results with those using
the original thermal energy distribution model

In order to test the accuracy and efficiency of the simp
fied thermal energy distribution model as compared with

s
FIG. 6. Streamlines of Ra5103, 104, 105, and 106.
1-6
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SIMPLIFIED THERMAL LATTICE BOLTZMANN MODEL . . . PHYSICAL REVIEW E 68, 026701 ~2003!
original thermal energy distribution model, the numeric
simulations for the same Rayleigh number on the same
using the original thermal model are also carried out. Th
numerical results for the Rayleigh numbers of 103, 104, 105,
and 106 are also given in Table I.

It can be observed from Table I that, for the same R
leigh number and the same number of grid points, the ca
lated results using the simplified thermal model are alm
the same as those using the original thermal model. T
confirms our findings that the compression work done by
pressure and viscous heat dissipation term can be negle
for such incompressible flow, which leads to the omission
the gradient term in the original evolution equation for t
new distribution function. So we can say that the simplifi
thermal model can get the same accurate results as the o
nal thermal model.

As far as the computational efficiency is concerned,
the same grid size, the calculation time using the simplifi
thermal model is much less than that using the original th
mal model. From Table I, we can see that for Ra5103, the
calculation time using the simplified thermal model is 1386
s, while the original thermal model takes 2297.0 s to get
converged solution. Similarly, for Ra5104– 106, only half or
even less than half of the calculation time is needed for
simplified thermal model to get the converged results
compared with the original thermal model under the sa
Rayleigh number. This shows that our simplified therm
model is more efficient than the original thermal model
getting the same accurate results.

C. Compressibility study of the simplified thermal energy
distribution model

In order to study the compressibility property of th
scheme, we use an incompressible isothermal LBGK mo
proposed by Guo@9# to modify the evolution equation for th
density distribution function in our simplified thermal ener
distribution model. It should be pointed out that this inco

FIG. 7. Isotherms of Ra5103, 104, 105, and 106.
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pressible scheme is, in fact, equivalent to the model pre
ously proposed by He and Luo@10#.

The density distribution function is changed into

f a~x1eadt,t1dt !2 f a~x,t !52
1

tn
@ f a~x,t !2 f a

eq~x,t !#

1Fa , ~32!

whereFa52 1
2 dt(da21da4)eWa• jWgb(T2Tm),

f a
eq5H 24sp1s0~VW !, a50

lp1sa~VW !, a51,2,3,4

gp1sa~VW !, a55,6,7,8,

sa~VW !5waF3eWa•VW

c2 1
9~eWa•VW !2

2c2 2
3VW 2

2c2 G ,

s5 5
12 , l5 1

3 , g5 1
12 .

The macroscopic variables are calculated by

VW 5 (
a51

8

ea f a , p5
1

4s F (
a51

8

f a1s0~VW !G . ~33!

Since this is a completely incompressible LBGK mod
the Chapman-Enskog expansion of this evolution equa
will recover the incompressible continuity and NS equati
correctly. We compare the numerical results of natural c
vection in a square cavity for a wide range of Rayleigh nu
bers, using the incompressible LBGK model and without
ing the incompressible LBGK model to see the effect of t
compressibility of our simplified thermal model.

Table III shows the numerical results of the maximu
horizontal velocity on the vertical midplane of the cavit
umax, and its locationY, the maximum vertical velocity on
the horizontal midplane of the cavity,vmax, and its location
X, the average Nusselt number throughout the cavityNu us-
ing the simplified thermal model with and without the in
compressible LBGK model. The numerical results of Navi
Stokes equations given by Shu and Xue@7# using the DQ
method are also included as benchmark data.

From Table III, we can see that the difference in the
sults using and without using the incompressible LBG
model is very small. But the results of the velocities usi
the incompressible LBGK model agree a little bit better w
the benchmark results than those without using the inco
pressible model. The higher the Rayleigh number is, the
ter this improvement is. For example, for Ra5104, the result
of the maximum horizontal velocity on the vertical midplan
of the cavity is 16.134 without using the incompressib
model and 16.146 using the incompressible model, while
benchmark result is 16.190. This shows that there is a l
bit of improvement for the maximum horizontal velocity o
the vertical midplane if using the incompressible model. F
a high Rayleigh number of 106, the maximum horizontal ve-
1-7
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TABLE III. Comparison of results using and without using the incompressible LBGK model.

Ra 103 104 105 106

Grid 1013101 1513151 2013210 2513251

Using 3.650 16.146 34.315 63.671
umax Without 3.644 16.134 34.261 63.024

DQ @7# 3.649 16.190 34.736 64.775
Using 0.810 0.820 0.855 0.852

y Without 0.810 0.820 0.855 0.848
DQ @7# 0.815 0.825 0.855 0.850
Using 3.704 19.593 68.012 217.57

vmax Without 3.691 19.552 67.799 215.26
DQ @7# 3.698 19.638 68.640 220.64
Using 0.180 0.120 0.065 0.040

x Without 0.180 0.120 0.065 0.040
DQ @7# 0.180 0.120 0.065 0.035
Using 1.117 2.241 4.508 8.737

Nu Without 1.117 2.241 4.511 8.731

DQ @7# 1.118 2.245 4.523 8.762
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locity on the vertical midplane of the cavity changes fro
63.024 without using the incompressible model to 63.6
using the incompressible model, while the benchmark re
is 64.775. The improvement is more obvious than that a
low Rayleigh number of 104. The same trend is applied t
the maximum vertical velocity on the horizontal midplane
the cavity. There is not much change in the average Nus
number. This is in line with the physical background of t
incompressible LBGK model. Since the use of the inco
pressible LBGK model is only for the evolution equation
the density distribution function, which is used to calcula
the pressure and velocity, the improvement for the veloci
is straightforward, while for the evolution equation of th
new distribution function we still need to introduce the a
sumption that the characteristic velocityAbg0DTH is within
the incompressible limit. So there should not be much diff
ence for the Nusselt number using or without using the
compressible LBGK model.

To sum up, this study shows that the compressibility
fect of the simplified thermal model is very small and can
used to solve the incompressible thermal flow without int
ducing any incompressible LBGK model.
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V. CONCLUSIONS

The numerical results of the natural convection in
square cavity for a wide range of Rayleigh numbers sh
that our simplified thermal energy distribution model can g
the same accurate results more efficiently as the orig
thermal energy distribution model. The compressibility
this scheme is also studied and the results show that
compressibility effect of this scheme can be neglected. T
simplification for the original thermal model agrees we
with the physical explanation that the compression wo
done by the pressure and the viscous heat dissipation ca
ignored for the incompressible flow. This scheme has
following good features. It does not include any gradie
term in the evolution equations and it preserves the simp
ity of the LBM. It is easier to implement as compared wi
the original thermal model. It is worth mentioning that a
though all the calculations are done on the uniform grid,
extension to the arbitrary mesh grid is straightforward
using the Taylor series expansion- and least-squares-b
LBM ~TLLBM !. The use of TLLBM in the thermal mode
has been studied by Shu, Peng, and Chew@4#.
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